ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2305.00109
87
26

Zero-shot performance of the Segment Anything Model (SAM) in 2D medical imaging: A comprehensive evaluation and practical guidelines

28 April 2023
C. M. Oliveira
L. V. Moura
R. Ravazio
L. S. Kupssinskü
Otávio Parraga
Marcelo Mussi Delucis
Rodrigo C. Barros
    VLM
    MedIm
ArXivPDFHTML
Abstract

Segmentation in medical imaging is a critical component for the diagnosis, monitoring, and treatment of various diseases and medical conditions. Presently, the medical segmentation landscape is dominated by numerous specialized deep learning models, each fine-tuned for specific segmentation tasks and image modalities. The recently-introduced Segment Anything Model (SAM) employs the ViT neural architecture and harnesses a massive training dataset to segment nearly any object; however, its suitability to the medical domain has not yet been investigated. In this study, we explore the zero-shot performance of SAM in medical imaging by implementing eight distinct prompt strategies across six datasets from four imaging modalities, including X-ray, ultrasound, dermatoscopy, and colonoscopy. Our findings reveal that SAM's zero-shot performance is not only comparable to, but in certain cases, surpasses the current state-of-the-art. Based on these results, we propose practical guidelines that require minimal interaction while consistently yielding robust outcomes across all assessed contexts. The source code, along with a demonstration of the recommended guidelines, can be accessed at https://github.com/Malta-Lab/SAM-zero-shot-in-Medical-Imaging.

View on arXiv
Comments on this paper