ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2304.14286
28
1

Semantic Frame Induction with Deep Metric Learning

27 April 2023
Kosuke Yamada
Ryohei Sasano
Koichi Takeda
ArXivPDFHTML
Abstract

Recent studies have demonstrated the usefulness of contextualized word embeddings in unsupervised semantic frame induction. However, they have also revealed that generic contextualized embeddings are not always consistent with human intuitions about semantic frames, which causes unsatisfactory performance for frame induction based on contextualized embeddings. In this paper, we address supervised semantic frame induction, which assumes the existence of frame-annotated data for a subset of predicates in a corpus and aims to build a frame induction model that leverages the annotated data. We propose a model that uses deep metric learning to fine-tune a contextualized embedding model, and we apply the fine-tuned contextualized embeddings to perform semantic frame induction. Our experiments on FrameNet show that fine-tuning with deep metric learning considerably improves the clustering evaluation scores, namely, the B-cubed F-score and Purity F-score, by about 8 points or more. We also demonstrate that our approach is effective even when the number of training instances is small.

View on arXiv
Comments on this paper