ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2304.12674
19
2

Compressing Sentence Representation with maximum Coding Rate Reduction

25 April 2023
Domagoj Ševerdija
Tomislav Prusina
Antonio Jovanovic
Luka Borozan
Jurica Maltar
Domagoj Matijević
ArXivPDFHTML
Abstract

In most natural language inference problems, sentence representation is needed for semantic retrieval tasks. In recent years, pre-trained large language models have been quite effective for computing such representations. These models produce high-dimensional sentence embeddings. An evident performance gap between large and small models exists in practice. Hence, due to space and time hardware limitations, there is a need to attain comparable results when using the smaller model, which is usually a distilled version of the large language model. In this paper, we assess the model distillation of the sentence representation model Sentence-BERT by augmenting the pre-trained distilled model with a projection layer additionally learned on the Maximum Coding Rate Reduction (MCR2)objective, a novel approach developed for general-purpose manifold clustering. We demonstrate that the new language model with reduced complexity and sentence embedding size can achieve comparable results on semantic retrieval benchmarks.

View on arXiv
Comments on this paper