Positive AI: Key Challenges for Designing Wellbeing-aligned Artificial Intelligence

Artificial Intelligence (AI) is rapidly transforming society, creating an urgent need to ensure its positive impact. In this article, we take a positive design approach towards this issue, viewing it as a matter of designing AI systems that actively support human wellbeing. However, designing wellbeing-aligned AI systems is difficult. This article adopts a cybernetic perspective to identify twelve key challenges across two categories: lack of knowledge and lack of motivation. Knowledge barriers include challenges in conceptualizing, measuring, and optimizing for wellbeing, then designing appropriate AI actions. Motivation barriers include misaligned incentives, financial and publicity risks, and a lack of data access preventing (third-party) research on wellbeing. To address these challenges we have captured our key takeaways in a research agenda related to 1) advancing the scientific understanding of the impact of AI systems on wellbeing, and 2) guiding design actions on how AI systems might be intentionally designed to promote and sustain wellbeing.
View on arXiv