ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2304.12202
13
43

ChatGPT may Pass the Bar Exam soon, but has a Long Way to Go for the LexGLUE benchmark

9 March 2023
Ilias Chalkidis
    ALM
    ELM
    AI4MH
    AILaw
ArXivPDFHTML
Abstract

Following the hype around OpenAI's ChatGPT conversational agent, the last straw in the recent development of Large Language Models (LLMs) that demonstrate emergent unprecedented zero-shot capabilities, we audit the latest OpenAI's GPT-3.5 model, `gpt-3.5-turbo', the first available ChatGPT model, in the LexGLUE benchmark in a zero-shot fashion providing examples in a templated instruction-following format. The results indicate that ChatGPT achieves an average micro-F1 score of 47.6% across LexGLUE tasks, surpassing the baseline guessing rates. Notably, the model performs exceptionally well in some datasets, achieving micro-F1 scores of 62.8% and 70.2% in the ECtHR B and LEDGAR datasets, respectively. The code base and model predictions are available for review on https://github.com/coastalcph/zeroshot_lexglue.

View on arXiv
Comments on this paper