ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2304.11618
22
8

Modality-Aware Negative Sampling for Multi-modal Knowledge Graph Embedding

23 April 2023
Yichi Zhang
Mingyang Chen
Wen Zhang
    GAN
ArXivPDFHTML
Abstract

Negative sampling (NS) is widely used in knowledge graph embedding (KGE), which aims to generate negative triples to make a positive-negative contrast during training. However, existing NS methods are unsuitable when multi-modal information is considered in KGE models. They are also inefficient due to their complex design. In this paper, we propose Modality-Aware Negative Sampling (MANS) for multi-modal knowledge graph embedding (MMKGE) to address the mentioned problems. MANS could align structural and visual embeddings for entities in KGs and learn meaningful embeddings to perform better in multi-modal KGE while keeping lightweight and efficient. Empirical results on two benchmarks demonstrate that MANS outperforms existing NS methods. Meanwhile, we make further explorations about MANS to confirm its effectiveness.

View on arXiv
Comments on this paper