ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2304.11579
13
18

StyLess: Boosting the Transferability of Adversarial Examples

23 April 2023
Kaisheng Liang
Bin Xiao
    AAML
ArXivPDFHTML
Abstract

Adversarial attacks can mislead deep neural networks (DNNs) by adding imperceptible perturbations to benign examples. The attack transferability enables adversarial examples to attack black-box DNNs with unknown architectures or parameters, which poses threats to many real-world applications. We find that existing transferable attacks do not distinguish between style and content features during optimization, limiting their attack transferability. To improve attack transferability, we propose a novel attack method called style-less perturbation (StyLess). Specifically, instead of using a vanilla network as the surrogate model, we advocate using stylized networks, which encode different style features by perturbing an adaptive instance normalization. Our method can prevent adversarial examples from using non-robust style features and help generate transferable perturbations. Comprehensive experiments show that our method can significantly improve the transferability of adversarial examples. Furthermore, our approach is generic and can outperform state-of-the-art transferable attacks when combined with other attack techniques.

View on arXiv
Comments on this paper