ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2304.11067
22
11

Novel Fine-Tuned Attribute Weighted Naïve Bayes NLoS Classifier for UWB Positioning

14 April 2023
Fuhu Che
Q. Ahmed
F. A. Khan
Faheem Khan
ArXiv (abs)PDFHTML
Abstract

In this paper, we propose a novel Fine-Tuned attribute Weighted Na\"ive Bayes (FT-WNB) classifier to identify the Line-of-Sight (LoS) and Non-Line-of-Sight (NLoS) for UltraWide Bandwidth (UWB) signals in an Indoor Positioning System (IPS). The FT-WNB classifier assigns each signal feature a specific weight and fine-tunes its probabilities to address the mismatch between the predicted and actual class. The performance of the FT-WNB classifier is compared with the state-of-the-art Machine Learning (ML) classifiers such as minimum Redundancy Maximum Relevance (mRMR)- kkk-Nearest Neighbour (KNN), Support Vector Machine (SVM), Decision Tree (DT), Na\"ive Bayes (NB), and Neural Network (NN). It is demonstrated that the proposed classifier outperforms other algorithms by achieving a high NLoS classification accuracy of 99.7%99.7\%99.7% with imbalanced data and 99.8%99.8\%99.8% with balanced data. The experimental results indicate that our proposed FT-WNB classifier significantly outperforms the existing state-of-the-art ML methods for LoS and NLoS signals in IPS in the considered scenario.

View on arXiv
Comments on this paper