ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2304.09728
24
18

Any-to-Any Style Transfer: Making Picasso and Da Vinci Collaborate

19 April 2023
Songhua Liu
Jingwen Ye
Xinchao Wang
    DiffM
ArXivPDFHTML
Abstract

Style transfer aims to render the style of a given image for style reference to another given image for content reference, and has been widely adopted in artistic generation and image editing. Existing approaches either apply the holistic style of the style image in a global manner, or migrate local colors and textures of the style image to the content counterparts in a pre-defined way. In either case, only one result can be generated for a specific pair of content and style images, which therefore lacks flexibility and is hard to satisfy different users with different preferences. We propose here a novel strategy termed Any-to-Any Style Transfer to address this drawback, which enables users to interactively select styles of regions in the style image and apply them to the prescribed content regions. In this way, personalizable style transfer is achieved through human-computer interaction. At the heart of our approach lies in (1) a region segmentation module based on Segment Anything, which supports region selection with only some clicks or drawing on images and thus takes user inputs conveniently and flexibly; (2) and an attention fusion module, which converts inputs from users to controlling signals for the style transfer model. Experiments demonstrate the effectiveness for personalizable style transfer. Notably, our approach performs in a plug-and-play manner portable to any style transfer method and enhance the controllablity. Our code is available \href{https://github.com/Huage001/Transfer-Any-Style}{here}.

View on arXiv
Comments on this paper