104
2

Linear convergence in time-varying generalized Nash equilibrium problems

Abstract

We study generalized games with full row rank equality constraints and we provide a strikingly simple proof of strong monotonicity of the associated KKT operator. This allows us to show linear convergence to a variational equilibrium of the resulting primal-dual pseudo-gradient dynamics. Then, we propose a fully-distributed algorithm with linear convergence guarantee for aggregative games under partial-decision information. Based on these results, we establish stability properties for online GNE seeking in games with time-varying cost functions and constraints. Finally, we illustrate our findings numerically on an economic dispatch problem for peer-to-peer energy markets.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.