ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2304.09591
11
0

5G-SRNG: 5G Spectrogram-based Random Number Generation for Devices with Low Entropy Sources

19 April 2023
Ferhat Ozgur Catak
Evren Çatak
Ogerta Elezaj
ArXivPDFHTML
Abstract

Random number generation (RNG) is a crucial element in security protocols, and its performance and reliability are critical for the safety and integrity of digital systems. This is especially true in 5G networks with many devices with low entropy sources. This paper proposes 5G-SRNG, an end-to-end random number generation solution for devices with low entropy sources in 5G networks. Compared to traditional RNG methods, the 5G-SRNG relies on hardware or software random number generators, using 5G spectral information, such as from spectrum-sensing or a spectrum-aware feedback mechanism, as a source of entropy. The proposed algorithm is experimentally verified, and its performance is analysed by simulating a realistic 5G network environment. Results show that 5G-SRNG outperforms existing RNG in all aspects, including randomness, partial correlation and power, making it suitable for 5G network deployments.

View on arXiv
Comments on this paper