ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2304.09452
22
1

Support and distribution inference from noisy data

19 April 2023
Jérémie Capitao-Miniconi
Elisabeth Gassiat
Luc Lehéricy
ArXivPDFHTML
Abstract

We consider noisy observations of a distribution with unknown support. In the deconvolution model, it has been proved recently [19] that, under very mild assumptions, it is possible to solve the deconvolution problem without knowing the noise distribution and with no sample of the noise. We first give general settings where the theory applies and provide classes of supports that can be recovered in this context. We then exhibit classes of distributions over which we prove adaptive minimax rates (up to a log log factor) for the estimation of the support in Hausdorff distance. Moreover, for the class of distributions with compact support, we provide estimators of the unknown (in general singular) distribution and prove maximum rates in Wasserstein distance. We also prove an almost matching lower bound on the associated minimax risk.

View on arXiv
Comments on this paper