ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2304.08379
14
31

Robust human position estimation in cooperative robotic cells

17 April 2023
António Amorim
Diana Guimaraes
T. Mendonça
Pedro Neto
P. Costa
A. Moreira
ArXivPDFHTML
Abstract

Robots are increasingly present in our lives, sharing the workspace and tasks with human co-workers. However, existing interfaces for human-robot interaction / cooperation (HRI/C) have limited levels of intuitiveness to use and safety is a major concern when humans and robots share the same workspace. Many times, this is due to the lack of a reliable estimation of the human pose in space which is the primary input to calculate the human-robot minimum distance (required for safety and collision avoidance) and HRI/C featuring machine learning algorithms classifying human behaviours / gestures. Each sensor type has its own characteristics resulting in problems such as occlusions (vision) and drift (inertial) when used in an isolated fashion. In this paper, it is proposed a combined system that merges the human tracking provided by a 3D vision sensor with the pose estimation provided by a set of inertial measurement units (IMUs) placed in human body limbs. The IMUs compensate the gaps in occluded areas to have tracking continuity. To mitigate the lingering effects of the IMU offset we propose a continuous online calculation of the offset value. Experimental tests were designed to simulate human motion in a human-robot collaborative environment where the robot moves away to avoid unexpected collisions with de human. Results indicate that our approach is able to capture the human\textsc's position, for example the forearm, with a precision in the millimetre range and robustness to occlusions.

View on arXiv
Comments on this paper