ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2304.08158
63
21
v1v2 (latest)

Attention Mixtures for Time-Aware Sequential Recommendation

17 April 2023
Viet-Anh Tran
Guillaume Salha-Galvan
Bruno Sguerra
Romain Hennequin
ArXiv (abs)PDFHTML
Abstract

Transformers emerged as powerful methods for sequential recommendation. However, existing architectures often overlook the complex dependencies between user preferences and the temporal context. In this short paper, we introduce MOJITO, an improved Transformer sequential recommender system that addresses this limitation. MOJITO leverages Gaussian mixtures of attention-based temporal context and item embedding representations for sequential modeling. Such an approach permits to accurately predict which items should be recommended next to users depending on past actions and the temporal context. We demonstrate the relevance of our approach, by empirically outperforming existing Transformers for sequential recommendation on several real-world datasets.

View on arXiv
Comments on this paper