ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2304.07665
11
3

Dynamic Exploration-Exploitation Trade-Off in Active Learning Regression with Bayesian Hierarchical Modeling

16 April 2023
Upala J. Islam
K. Paynabar
G. Runger
A. Iquebal
ArXivPDFHTML
Abstract

Active learning provides a framework to adaptively query the most informative experiments towards learning an unknown black-box function. Various approaches of active learning have been proposed in the literature, however, they either focus on exploration or exploitation in the design space. Methods that do consider exploration-exploitation simultaneously employ fixed or ad-hoc measures to control the trade-off that may not be optimal. In this paper, we develop a Bayesian hierarchical approach, referred as BHEEM, to dynamically balance the exploration-exploitation trade-off as more data points are queried. To sample from the posterior distribution of the trade-off parameter, We subsequently formulate an approximate Bayesian computation approach based on the linear dependence of queried data in the feature space. Simulated and real-world examples show the proposed approach achieves at least 21% and 11% average improvement when compared to pure exploration and exploitation strategies respectively. More importantly, we note that by optimally balancing the trade-off between exploration and exploitation, BHEEM performs better or at least as well as either pure exploration or pure exploitation.

View on arXiv
Comments on this paper