ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2304.07070
14
0

Who breaks early, looses: goal oriented training of deep neural networks based on port Hamiltonian dynamics

14 April 2023
Julian Burghoff
Marc Heinrich Monells
Hanno Gottschalk
ArXivPDFHTML
Abstract

The highly structured energy landscape of the loss as a function of parameters for deep neural networks makes it necessary to use sophisticated optimization strategies in order to discover (local) minima that guarantee reasonable performance. Overcoming less suitable local minima is an important prerequisite and often momentum methods are employed to achieve this. As in other non local optimization procedures, this however creates the necessity to balance between exploration and exploitation. In this work, we suggest an event based control mechanism for switching from exploration to exploitation based on reaching a predefined reduction of the loss function. As we give the momentum method a port Hamiltonian interpretation, we apply the 'heavy ball with friction' interpretation and trigger breaking (or friction) when achieving certain goals. We benchmark our method against standard stochastic gradient descent and provide experimental evidence for improved performance of deep neural networks when our strategy is applied.

View on arXiv
Comments on this paper