ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2304.06835
20
13
v1v2v3 (latest)

Automated Translation and Accelerated Solving of Differential Equations on Multiple GPU Platforms

13 April 2023
Utkarsh Utkarsh
Valentin Churavy
Yingbo Ma
Tim Besard
Prakitr Srisuma
Tim Gymnich
Adam R. Gerlach
Alan Edelman
ArXiv (abs)PDFHTML
Abstract

We demonstrate a high-performance vendor-agnostic method for massively parallel solving of ensembles of ordinary differential equations (ODEs) and stochastic differential equations (SDEs) on GPUs. The method is integrated with a widely used differential equation solver library in a high-level language (Julia's DifferentialEquations.jl) and enables GPU acceleration without requiring code changes by the user. Our approach achieves state-of-the-art performance compared to hand-optimized CUDA-C++ kernels, while performing 20−100×20-100\times20−100× faster than the vectorized-map (vmap) approach implemented in JAX and PyTorch. Performance evaluation on NVIDIA, AMD, Intel, and Apple GPUs demonstrates performance portability and vendor-agnosticism. We show composability with MPI to enable distributed multi-GPU workflows. The implemented solvers are fully featured, supporting event handling, automatic differentiation, and incorporating of datasets via the GPU's texture memory, allowing scientists to take advantage of GPU acceleration on all major current architectures without changing their model code and without loss of performance.

View on arXiv
Comments on this paper