44
17

Power-seeking can be probable and predictive for trained agents

Abstract

Power-seeking behavior is a key source of risk from advanced AI, but our theoretical understanding of this phenomenon is relatively limited. Building on existing theoretical results demonstrating power-seeking incentives for most reward functions, we investigate how the training process affects power-seeking incentives and show that they are still likely to hold for trained agents under some simplifying assumptions. We formally define the training-compatible goal set (the set of goals consistent with the training rewards) and assume that the trained agent learns a goal from this set. In a setting where the trained agent faces a choice to shut down or avoid shutdown in a new situation, we prove that the agent is likely to avoid shutdown. Thus, we show that power-seeking incentives can be probable (likely to arise for trained agents) and predictive (allowing us to predict undesirable behavior in new situations).

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.