ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2304.06237
32
5

Deep learning based ECG segmentation for delineation of diverse arrhythmias

13 April 2023
Chankyu Joung
Mijin Kim
Taejin Paik
S. Kong
Seung-Young Oh
Won Kyeong Jeon
Jae-hu Jeon
Joong-Sik Hong
Wan-Joong Kim
Woong Kook
M. Cha
Otto van Koert
ArXivPDFHTML
Abstract

Accurate delineation of key waveforms in an ECG is a critical initial step in extracting relevant features to support the diagnosis and treatment of heart conditions. Although deep learning based methods using a segmentation model to locate the P, QRS, and T waves have shown promising results, their ability to handle signals exhibiting arrhythmia remains unclear. This study builds on existing research by introducing a U-Net-like segmentation model for ECG delineation, with a particular focus on diverse arrhythmias. For this purpose, we curate an internal dataset containing waveform boundary annotations for various arrhythmia types to train and validate our model. Our key contributions include identifying segmentation model failures in different arrhythmia types, developing a robust model using a diverse training set, achieving comparable performance on benchmark datasets, and introducing a classification guided strategy to reduce false P wave predictions for specific arrhythmias. This study advances deep learning based ECG delineation in the context of arrhythmias and highlights its challenges.

View on arXiv
Comments on this paper