42
8

Semantic Feature Verification in FLAN-T5

Abstract

This study evaluates the potential of a large language model for aiding in generation of semantic feature norms - a critical tool for evaluating conceptual structure in cognitive science. Building from an existing human-generated dataset, we show that machine-verified norms capture aspects of conceptual structure beyond what is expressed in human norms alone, and better explain human judgments of semantic similarity amongst items that are distally related. The results suggest that LLMs can greatly enhance traditional methods of semantic feature norm verification, with implications for our understanding of conceptual representation in humans and machines.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.