ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2304.05073
36
2

A Tale of Sampling and Estimation in Discounted Reinforcement Learning

11 April 2023
Alberto Maria Metelli
Mirco Mutti
Marcello Restelli
    OffRL
ArXivPDFHTML
Abstract

The most relevant problems in discounted reinforcement learning involve estimating the mean of a function under the stationary distribution of a Markov reward process, such as the expected return in policy evaluation, or the policy gradient in policy optimization. In practice, these estimates are produced through a finite-horizon episodic sampling, which neglects the mixing properties of the Markov process. It is mostly unclear how this mismatch between the practical and the ideal setting affects the estimation, and the literature lacks a formal study on the pitfalls of episodic sampling, and how to do it optimally. In this paper, we present a minimax lower bound on the discounted mean estimation problem that explicitly connects the estimation error with the mixing properties of the Markov process and the discount factor. Then, we provide a statistical analysis on a set of notable estimators and the corresponding sampling procedures, which includes the finite-horizon estimators often used in practice. Crucially, we show that estimating the mean by directly sampling from the discounted kernel of the Markov process brings compelling statistical properties w.r.t. the alternative estimators, as it matches the lower bound without requiring a careful tuning of the episode horizon.

View on arXiv
Comments on this paper