48
5

Efficient Distributed Decomposition and Routing Algorithms in Minor-Free Networks and Their Applications

Abstract

In the LOCAL model, low-diameter decomposition is a useful tool in designing algorithms, as it allows us to shift from the general graph setting to the low-diameter graph setting, where brute-force information gathering can be done efficiently. Recently, Chang and Su [PODC 2022] showed that any high-conductance network excluding a fixed minor contains a high-degree vertex, so the entire graph topology can be gathered to one vertex efficiently in the CONGEST model using expander routing. Therefore, in networks excluding a fixed minor, many problems that can be solved efficiently in LOCAL via low-diameter decomposition can also be solved efficiently in CONGEST via expander decomposition. In this work, we show improved decomposition and routing algorithms for networks excluding a fixed minor in the CONGEST model. Our algorithms cost poly(logn,1/ϵ)\text{poly}(\log n, 1/\epsilon) rounds deterministically. For bounded-degree graphs, our algorithms finish in O(ϵ1logn)+ϵO(1)O(\epsilon^{-1}\log n) + \epsilon^{-O(1)} rounds. Our algorithms have a wide range of applications, including the following results in CONGEST. 1. A (1ϵ)(1-\epsilon)-approximate maximum independent set in a network excluding a fixed minor can be computed deterministically in O(ϵ1logn)+ϵO(1)O(\epsilon^{-1}\log^\ast n) + \epsilon^{-O(1)} rounds, nearly matching the Ω(ϵ1logn)\Omega(\epsilon^{-1}\log^\ast n) lower bound of Lenzen and Wattenhofer [DISC 2008]. 2. Property testing of any additive minor-closed property can be done deterministically in O(logn)O(\log n) rounds if ϵ\epsilon is a constant or O(ϵ1logn)+ϵO(1)O(\epsilon^{-1}\log n) + \epsilon^{-O(1)} rounds if the maximum degree Δ\Delta is a constant, nearly matching the Ω(ϵ1logn)\Omega(\epsilon^{-1}\log n) lower bound of Levi, Medina, and Ron [PODC 2018].

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.