ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2304.04190
22
9

Team QUST at SemEval-2023 Task 3: A Comprehensive Study of Monolingual and Multilingual Approaches for Detecting Online News Genre, Framing and Persuasion Techniques

9 April 2023
Ye Jiang
ArXivPDFHTML
Abstract

This paper describes the participation of team QUST in the SemEval2023 task 3. The monolingual models are first evaluated with the under-sampling of the majority classes in the early stage of the task. Then, the pre-trained multilingual model is fine-tuned with a combination of the class weights and the sample weights. Two different fine-tuning strategies, the task-agnostic and the task-dependent, are further investigated. All experiments are conducted under the 10-fold cross-validation, the multilingual approaches are superior to the monolingual ones. The submitted system achieves the second best in Italian and Spanish (zero-shot) in subtask-1.

View on arXiv
Comments on this paper