ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2304.04060
18
1

Application of Self-Supervised Learning to MICA Model for Reconstructing Imperfect 3D Facial Structures

8 April 2023
P. D. Nguyen
Thinh D. Le
Duong Q. Nguyen
Binh Duc Nguyen
H. Nguyen-Xuan
ArXivPDFHTML
Abstract

In this study, we emphasize the integration of a pre-trained MICA model with an imperfect face dataset, employing a self-supervised learning approach. We present an innovative method for regenerating flawed facial structures, yielding 3D printable outputs that effectively support physicians in their patient treatment process. Our results highlight the model's capacity for concealing scars and achieving comprehensive facial reconstructions without discernible scarring. By capitalizing on pre-trained models and necessitating only a few hours of supplementary training, our methodology adeptly devises an optimal model for reconstructing damaged and imperfect facial features. Harnessing contemporary 3D printing technology, we institute a standardized protocol for fabricating realistic, camouflaging mask models for patients in a laboratory environment.

View on arXiv
Comments on this paper