ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2304.03189
16
0

The Concept of Forward-Forward Learning Applied to a Multi Output Perceptron

6 April 2023
K. F. Karlsson
ArXivPDFHTML
Abstract

The concept of a recently proposed Forward-Forward learning algorithm for fully connected artificial neural networks is applied to a single multi output perceptron for classification. The parameters of the system are trained with respect to increased (decreased) "goodness" for correctly (incorrectly) labelled input samples. Basic numerical tests demonstrate that the trained perceptron effectively deals with data sets that have non-linear decision boundaries. Moreover, the overall performance is comparable to more complex neural networks with hidden layers. The benefit of the approach presented here is that it only involves a single matrix multiplication.

View on arXiv
Comments on this paper