ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2304.03031
20
1

Evidentiality-aware Retrieval for Overcoming Abstractiveness in Open-Domain Question Answering

6 April 2023
Yongho Song
Dahyun Lee
Myungha Jang
Seung-won Hwang
Kyungjae Lee
Dongha Lee
Jinyeong Yeo
    RALM
ArXivPDFHTML
Abstract

The long-standing goal of dense retrievers in abtractive open-domain question answering (ODQA) tasks is to learn to capture evidence passages among relevant passages for any given query, such that the reader produce factually correct outputs from evidence passages. One of the key challenge is the insufficient amount of training data with the supervision of the answerability of the passages. Recent studies rely on iterative pipelines to annotate answerability using signals from the reader, but their high computational costs hamper practical applications. In this paper, we instead focus on a data-centric approach and propose Evidentiality-Aware Dense Passage Retrieval (EADPR), which leverages synthetic distractor samples to learn to discriminate evidence passages from distractors. We conduct extensive experiments to validate the effectiveness of our proposed method on multiple abstractive ODQA tasks.

View on arXiv
Comments on this paper