ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2304.01330
53
4

A Comparison of Document Similarity Algorithms

3 April 2023
Nicholas Gahman
V. Elangovan
    AI4TS
ArXiv (abs)PDFHTML
Abstract

Document similarity is an important part of Natural Language Processing and is most commonly used for plagiarism-detection and text summarization. Thus, finding the overall most effective document similarity algorithm could have a major positive impact on the field of Natural Language Processing. This report sets out to examine the numerous document similarity algorithms, and determine which ones are the most useful. It addresses the most effective document similarity algorithm by categorizing them into 3 types of document similarity algorithms: statistical algorithms, neural networks, and corpus/knowledge-based algorithms. The most effective algorithms in each category are also compared in our work using a series of benchmark datasets and evaluations that test every possible area that each algorithm could be used in.

View on arXiv
Comments on this paper