ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2303.18176
17
3

Affective Computing for Human-Robot Interaction Research: Four Critical Lessons for the Hitchhiker

31 March 2023
Hatice Gunes
Nikhil Churamani
ArXivPDFHTML
Abstract

Social Robotics and Human-Robot Interaction (HRI) research relies on different Affective Computing (AC) solutions for sensing, perceiving and understanding human affective behaviour during interactions. This may include utilising off-the-shelf affect perception models that are pre-trained on popular affect recognition benchmarks and directly applied to situated interactions. However, the conditions in situated human-robot interactions differ significantly from the training data and settings of these models. Thus, there is a need to deepen our understanding of how AC solutions can be best leveraged, customised and applied for situated HRI. This paper, while critiquing the existing practices, presents four critical lessons to be noted by the hitchhiker when applying AC for HRI research. These lessons conclude that: (i) The six basic emotions categories are irrelevant in situated interactions, (ii) Affect recognition accuracy (%) improvements are unimportant, (iii) Affect recognition does not generalise across contexts, and (iv) Affect recognition alone is insufficient for adaptation and personalisation. By describing the background and the context for each lesson, and demonstrating how these lessons have been learnt, this paper aims to enable the hitchhiker to successfully and insightfully leverage AC solutions for advancing HRI research.

View on arXiv
Comments on this paper