Past work exploring adversarial vulnerability have focused on situations where an adversary can perturb all dimensions of model input. On the other hand, a range of recent works consider the case where either (i) an adversary can perturb a limited number of input parameters or (ii) a subset of modalities in a multimodal problem. In both of these cases, adversarial examples are effectively constrained to a subspace in the ambient input space . Motivated by this, in this work we investigate how adversarial vulnerability depends on . In particular, we show that the adversarial success of standard PGD attacks with norm constraints behaves like a monotonically increasing function of where is the perturbation budget and , provided (the case presents additional subtleties which we analyze in some detail). This functional form can be easily derived from a simple toy linear model, and as such our results land further credence to arguments that adversarial examples are endemic to locally linear models on high dimensional spaces.
View on arXiv