ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2303.13804
20
1

UniTS: A Universal Time Series Analysis Framework with Self-supervised Representation Learning

24 March 2023
Zhiyu Liang
Cheng Liang
Zheng Liang
Hongzhi Wang
    SSL
    AI4TS
ArXivPDFHTML
Abstract

Machine learning has emerged as a powerful tool for time series analysis. Existing methods are usually customized for different analysis tasks and face challenges in tackling practical problems such as partial labeling and domain shift. To achieve universal analysis and address the aforementioned problems, we develop UniTS, a novel framework that incorporates self-supervised representation learning (or pre-training). The components of UniTS are designed using sklearn-like APIs to allow flexible extensions. We demonstrate how users can easily perform an analysis task using the user-friendly GUIs, and show the superior performance of UniTS over the traditional task-specific methods without self-supervised pre-training on five mainstream tasks and two practical settings.

View on arXiv
Comments on this paper