ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2303.13753
24
6

EMS-Net: Efficient Multi-Temporal Self-Attention For Hyperspectral Change Detection

24 March 2023
Meiqi Hu
Chen Wu
Bo Du
ArXivPDFHTML
Abstract

Hyperspectral change detection plays an essential role of monitoring the dynamic urban development and detecting precise fine object evolution and alteration. In this paper, we have proposed an original Efficient Multi-temporal Self-attention Network (EMS-Net) for hyperspectral change detection. The designed EMS module cuts redundancy of those similar and containing-no-changes feature maps, computing efficient multi-temporal change information for precise binary change map. Besides, to explore the clustering characteristics of the change detection, a novel supervised contrastive loss is provided to enhance the compactness of the unchanged. Experiments implemented on two hyperspectral change detection datasets manifests the out-standing performance and validity of proposed method.

View on arXiv
Comments on this paper