ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2303.13497
31
34

TriPlaneNet: An Encoder for EG3D Inversion

23 March 2023
A. Bhattarai
Matthias Nießner
Artem Sevastopolsky
ArXivPDFHTML
Abstract

Recent progress in NeRF-based GANs has introduced a number of approaches for high-resolution and high-fidelity generative modeling of human heads with a possibility for novel view rendering. At the same time, one must solve an inverse problem to be able to re-render or modify an existing image or video. Despite the success of universal optimization-based methods for 2D GAN inversion, those applied to 3D GANs may fail to extrapolate the result onto the novel view, whereas optimization-based 3D GAN inversion methods are time-consuming and can require at least several minutes per image. Fast encoder-based techniques, such as those developed for StyleGAN, may also be less appealing due to the lack of identity preservation. Our work introduces a fast technique that bridges the gap between the two approaches by directly utilizing the tri-plane representation presented for the EG3D generative model. In particular, we build upon a feed-forward convolutional encoder for the latent code and extend it with a fully-convolutional predictor of tri-plane numerical offsets. The renderings are similar in quality to the ones produced by optimization-based techniques and outperform the ones by encoder-based methods. As we empirically prove, this is a consequence of directly operating in the tri-plane space, not in the GAN parameter space, while making use of an encoder-based trainable approach. Finally, we demonstrate significantly more correct embedding of a face image in 3D than for all the baselines, further strengthened by a probably symmetric prior enabled during training.

View on arXiv
Comments on this paper