ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2303.12848
16
1

Test-time Detection and Repair of Adversarial Samples via Masked Autoencoder

22 March 2023
Yun-Yun Tsai
Ju-Chin Chao
Albert Wen
Zhaoyuan Yang
Chengzhi Mao
Tapan Shah
Junfeng Yang
    AAML
ArXivPDFHTML
Abstract

Training-time defenses, known as adversarial training, incur high training costs and do not generalize to unseen attacks. Test-time defenses solve these issues but most existing test-time defenses require adapting the model weights, therefore they do not work on frozen models and complicate model memory management. The only test-time defense that does not adapt model weights aims to adapt the input with self-supervision tasks. However, we empirically found these self-supervision tasks are not sensitive enough to detect adversarial attacks accurately. In this paper, we propose DRAM, a novel defense method to detect and repair adversarial samples at test time via Masked autoencoder (MAE). We demonstrate how to use MAE losses to build a Kolmogorov-Smirnov test to detect adversarial samples. Moreover, we use the MAE losses to calculate input reversal vectors that repair adversarial samples resulting from previously unseen attacks. Results on large-scale ImageNet dataset show that, compared to all detection baselines evaluated, DRAM achieves the best detection rate (82% on average) on all eight adversarial attacks evaluated. For attack repair, DRAM improves the robust accuracy by 6% ~ 41% for standard ResNet50 and 3% ~ 8% for robust ResNet50 compared with the baselines that use contrastive learning and rotation prediction.

View on arXiv
Comments on this paper