ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2303.12238
30
2

DG-Trans: Dual-level Graph Transformer for Spatiotemporal Incident Impact Prediction on Traffic Networks

21 March 2023
Yanshen Sun
Kaiqun Fu
Chang-Tien Lu
    AI4TS
    AI4CE
ArXivPDFHTML
Abstract

The prompt estimation of traffic incident impacts can guide commuters in their trip planning and improve the resilience of transportation agencies' decision-making on resilience. However, it is more challenging than node-level and graph-level forecasting tasks, as it requires extracting the anomaly subgraph or sub-time-series from dynamic graphs. In this paper, we propose DG-Trans, a novel traffic incident impact prediction framework, to foresee the impact of traffic incidents through dynamic graph learning. The proposed framework contains a dual-level spatial transformer and an importance-score-based temporal transformer, and the performance of this framework is justified by two newly constructed benchmark datasets. The dual-level spatial transformer removes unnecessary edges between nodes to isolate the affected subgraph from the other nodes. Meanwhile, the importance-score-based temporal transformer identifies abnormal changes in node features, causing the predictions to rely more on measurement changes after the incident occurs. Therefore, DG-Trans is equipped with dual abilities that extract spatiotemporal dependency and identify anomaly nodes affected by incidents while removing noise introduced by benign nodes. Extensive experiments on real-world datasets verify that DG-Trans outperforms the existing state-of-the-art methods, especially in extracting spatiotemporal dependency patterns and predicting traffic accident impacts. It offers promising potential for traffic incident management systems.

View on arXiv
Comments on this paper