ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2303.12234
27
5

Pre-NeRF 360: Enriching Unbounded Appearances for Neural Radiance Fields

21 March 2023
Ahmad AlMughrabi
Umair Haroon
Ricardo Marques
P. Radeva
ArXivPDFHTML
Abstract

Neural radiance fields (NeRF) appeared recently as a powerful tool to generate realistic views of objects and confined areas. Still, they face serious challenges with open scenes, where the camera has unrestricted movement and content can appear at any distance. In such scenarios, current NeRF-inspired models frequently yield hazy or pixelated outputs, suffer slow training times, and might display irregularities, because of the challenging task of reconstructing an extensive scene from a limited number of images. We propose a new framework to boost the performance of NeRF-based architectures yielding significantly superior outcomes compared to the prior work. Our solution overcomes several obstacles that plagued earlier versions of NeRF, including handling multiple video inputs, selecting keyframes, and extracting poses from real-world frames that are ambiguous and symmetrical. Furthermore, we applied our framework, dubbed as "Pre-NeRF 360", to enable the use of the Nutrition5k dataset in NeRF and introduce an updated version of this dataset, known as the N5k360 dataset.

View on arXiv
Comments on this paper