ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2303.12057
20
27

Large Language Models Can Be Used to Estimate the Latent Positions of Politicians

21 March 2023
Patrick Y. Wu
Jonathan Nagler
Joshua A. Tucker
Solomon Messing
ArXivPDFHTML
Abstract

Existing approaches to estimating politicians' latent positions along specific dimensions often fail when relevant data is limited. We leverage the embedded knowledge in generative large language models (LLMs) to address this challenge and measure lawmakers' positions along specific political or policy dimensions. We prompt an instruction/dialogue-tuned LLM to pairwise compare lawmakers and then scale the resulting graph using the Bradley-Terry model. We estimate novel measures of U.S. senators' positions on liberal-conservative ideology, gun control, and abortion. Our liberal-conservative scale, used to validate LLM-driven scaling, strongly correlates with existing measures and offsets interpretive gaps, suggesting LLMs synthesize relevant data from internet and digitized media rather than memorizing existing measures. Our gun control and abortion measures -- the first of their kind -- differ from the liberal-conservative scale in face-valid ways and predict interest group ratings and legislator votes better than ideology alone. Our findings suggest LLMs hold promise for solving complex social science measurement problems.

View on arXiv
Comments on this paper