ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2303.11141
20
1

DocRED-FE: A Document-Level Fine-Grained Entity And Relation Extraction Dataset

20 March 2023
Hao Wang
Weimin Xiong
Yifan Song
Dawei Zhu
Yu Xia
Sujian Li
ArXivPDFHTML
Abstract

Joint entity and relation extraction (JERE) is one of the most important tasks in information extraction. However, most existing works focus on sentence-level coarse-grained JERE, which have limitations in real-world scenarios. In this paper, we construct a large-scale document-level fine-grained JERE dataset DocRED-FE, which improves DocRED with Fine-Grained Entity Type. Specifically, we redesign a hierarchical entity type schema including 11 coarse-grained types and 119 fine-grained types, and then re-annotate DocRED manually according to this schema. Through comprehensive experiments we find that: (1) DocRED-FE is challenging to existing JERE models; (2) Our fine-grained entity types promote relation classification. We make DocRED-FE with instruction and the code for our baselines publicly available at https://github.com/PKU-TANGENT/DOCRED-FE.

View on arXiv
Comments on this paper