SoK: Scalability Techniques for BFT Consensus

With the advancement of blockchain systems, many recent research works have proposed distributed ledger technology~(DLT) that employs Byzantine fault-tolerant~(BFT) consensus protocols to decide which block to append next to the ledger. Notably, BFT consensus can offer high performance, energy efficiency, and provable correctness properties, and it is thus considered a promising building block for creating highly resilient and performant blockchain infrastructures. Yet, a major ongoing challenge is to make BFT consensus applicable to large-scale environments. A large body of recent work addresses this challenge by developing novel ideas to improve the scalability of BFT consensus, thus opening the path for a new generation of BFT protocols tailored to the needs of blockchain. In this survey, we create a systematization of knowledge about the novel scalability-enhancing techniques that state-of-the-art BFT consensus protocols use. For our comparison, we closely analyze the efforts, assumptions, and trade-offs these protocols make.
View on arXiv