ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2303.10796
25
3

Uncertainty Driven Bottleneck Attention U-net for Organ at Risk Segmentation

19 March 2023
Abdullah Nazib
Riad Hassan
Zahidul Islam
Clinton Fookes
    SSeg
ArXivPDFHTML
Abstract

Organ at risk (OAR) segmentation in computed tomography (CT) imagery is a difficult task for automated segmentation methods and can be crucial for downstream radiation treatment planning. U-net has become a de-facto standard for medical image segmentation and is frequently used as a common baseline in medical image segmentation tasks. In this paper, we propose a multiple decoder U-net architecture and use the segmentation disagreement between the decoders as attention to the bottleneck of the network for segmentation refinement. While feature correlation is considered as attention in most cases, in our case it is the uncertainty from the network used as attention. For accurate segmentation, we also proposed a CT intensity integrated regularization loss. Proposed regularisation helps model understand the intensity distribution of low contrast tissues. We tested our model on two publicly available OAR challenge datasets. We also conducted the ablation on each datasets with the proposed attention module and regularization loss. Experimental results demonstrate a clear accuracy improvement on both datasets.

View on arXiv
Comments on this paper