ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2303.10590
23
15

Multi-modal Facial Action Unit Detection with Large Pre-trained Models for the 5th Competition on Affective Behavior Analysis in-the-wild

19 March 2023
Yufeng Yin
Minh Tran
Di Chang
Xinrui Wang
M. Soleymani
    CVBM
ArXivPDFHTML
Abstract

Facial action unit detection has emerged as an important task within facial expression analysis, aimed at detecting specific pre-defined, objective facial expressions, such as lip tightening and cheek raising. This paper presents our submission to the Affective Behavior Analysis in-the-wild (ABAW) 2023 Competition for AU detection. We propose a multi-modal method for facial action unit detection with visual, acoustic, and lexical features extracted from the large pre-trained models. To provide high-quality details for visual feature extraction, we apply super-resolution and face alignment to the training data and show potential performance gain. Our approach achieves the F1 score of 52.3% on the official validation set of the 5th ABAW Challenge.

View on arXiv
Comments on this paper