ResearchTrend.AI
  • Papers
  • Communities
  • Organizations
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2303.10315
56
6

Lung segmentation with NASNet-Large-Decoder Net

18 March 2023
Youshan Zhang
    MedImSSeg
ArXiv (abs)PDFHTML
Abstract

Lung cancer has emerged as a severe disease that threatens human life and health. The precise segmentation of lung regions is a crucial prerequisite for localizing tumors, which can provide accurate information for lung image analysis. In this work, we first propose a lung image segmentation model using the NASNet-Large as an encoder and then followed by a decoder architecture, which is one of the most commonly used architectures in deep learning for image segmentation. The proposed NASNet-Large-decoder architecture can extract high-level information and expand the feature map to recover the segmentation map. To further improve the segmentation results, we propose a post-processing layer to remove the irrelevant portion of the segmentation map. Experimental results show that an accurate segmentation model with 0.92 dice scores outperforms state-of-the-art performance.

View on arXiv
Comments on this paper