ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2303.09639
22
7

Neural Architecture Search for Effective Teacher-Student Knowledge Transfer in Language Models

16 March 2023
Aashka Trivedi
Takuma Udagawa
Michele Merler
Rameswar Panda
Yousef El-Kurdi
Bishwaranjan Bhattacharjee
ArXivPDFHTML
Abstract

Large pretrained language models have achieved state-of-the-art results on a variety of downstream tasks. Knowledge Distillation (KD) into a smaller student model addresses their inefficiency, allowing for deployment in resource-constrained environments. However, KD can be ineffective when the student is manually selected from a set of existing options, since it can be a sub-optimal choice within the space of all possible student architectures. We develop multilingual KD-NAS, the use of Neural Architecture Search (NAS) guided by KD to find the optimal student architecture for task agnostic distillation from a multilingual teacher. In each episode of the search process, a NAS controller predicts a reward based on the distillation loss and latency of inference. The top candidate architectures are then distilled from the teacher on a small proxy set. Finally the architecture(s) with the highest reward is selected, and distilled on the full training corpus. KD-NAS can automatically trade off efficiency and effectiveness, and recommends architectures suitable to various latency budgets. Using our multi-layer hidden state distillation process, our KD-NAS student model achieves a 7x speedup on CPU inference (2x on GPU) compared to a XLM-Roberta Base Teacher, while maintaining 90% performance, and has been deployed in 3 software offerings requiring large throughput, low latency and deployment on CPU.

View on arXiv
Comments on this paper