ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2303.09468
26
16

On the Existence of a Complexity in Fixed Budget Bandit Identification

16 March 2023
Rémy Degenne
ArXivPDFHTML
Abstract

In fixed budget bandit identification, an algorithm sequentially observes samples from several distributions up to a given final time. It then answers a query about the set of distributions. A good algorithm will have a small probability of error. While that probability decreases exponentially with the final time, the best attainable rate is not known precisely for most identification tasks. We show that if a fixed budget task admits a complexity, defined as a lower bound on the probability of error which is attained by the same algorithm on all bandit problems, then that complexity is determined by the best non-adaptive sampling procedure for that problem. We show that there is no such complexity for several fixed budget identification tasks including Bernoulli best arm identification with two arms: there is no single algorithm that attains everywhere the best possible rate.

View on arXiv
Comments on this paper