ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2303.09026
64
1
v1v2v3v4v5v6v7 (latest)

Commonsense Knowledge Assisted Deep Learning for Resource-constrained and Fine-grained Object Detection

16 March 2023
Pufen Zhang
Tianhua Chen
    ObjD
ArXiv (abs)PDFHTMLGithub (1★)
Abstract

In this paper, we consider fine-grained image object detection in resource-constrained cases such as edge computing. Deep learning (DL), namely learning with deep neural networks (DNNs), has become the dominating approach to object detection. To achieve accurate fine-grained detection, one needs to employ a large enough DNN model and a vast amount of data annotations, which brings a challenge for using modern DL object detectors in resource-constrained cases. To this end, we propose an approach, which leverages commonsense knowledge to assist a coarse-grained object detector to get accurate fine-grained detection results. Specifically, we introduce a commonsense knowledge inference module (CKIM) to process coarse-grained lables given by a benchmark DL detector to produce fine-grained lables. We consider both crisp-rule and fuzzy-rule based inference in our CKIM; the latter is used to handle ambiguity in the target semantic labels. We implement our method based on several modern DL detectors, namely YOLOv4, Mobilenetv3-SSD and YOLOv7-tiny. Experiment results show that our approach outperforms benchmark detectors remarkably in terms of accuracy, model size and processing latency.

View on arXiv
Comments on this paper