ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2303.08676
33
8

Publicly-Verifiable Deletion via Target-Collapsing Functions

15 March 2023
James Bartusek
Dakshita Khurana
Alexander Poremba
ArXivPDFHTML
Abstract

We build quantum cryptosystems that support publicly-verifiable deletion from standard cryptographic assumptions. We introduce target-collapsing as a weakening of collapsing for hash functions, analogous to how second preimage resistance weakens collision resistance; that is, target-collapsing requires indistinguishability between superpositions and mixtures of preimages of an honestly sampled image. We show that target-collapsing hashes enable publicly-verifiable deletion (PVD), proving conjectures from [Poremba, ITCS'23] and demonstrating that the Dual-Regev encryption (and corresponding fully homomorphic encryption) schemes support PVD under the LWE assumption. We further build on this framework to obtain a variety of primitives supporting publicly-verifiable deletion from weak cryptographic assumptions, including: - Commitments with PVD assuming the existence of injective one-way functions, or more generally, almost-regular one-way functions. Along the way, we demonstrate that (variants of) target-collapsing hashes can be built from almost-regular one-way functions. - Public-key encryption with PVD assuming trapdoored variants of injective (or almost-regular) one-way functions. We also demonstrate that the encryption scheme of [Hhan, Morimae, and Yamakawa, Eurocrypt'23] based on pseudorandom group actions has PVD. - XXX with PVD for X∈{X \in \{X∈{attribute-based encryption, quantum fully-homomorphic encryption, witness encryption, time-revocable encryption}\}}, assuming XXX and trapdoored variants of injective (or almost-regular) one-way functions.

View on arXiv
Comments on this paper