ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2303.08459
6
0

Forecasting Intraday Power Output by a Set of PV Systems using Recurrent Neural Networks and Physical Covariates

15 March 2023
P. Bruneau
D. Fiorelli
Christian Braun
Daniel Koster
    BDL
ArXivPDFHTML
Abstract

Accurate intraday forecasts of the power output by PhotoVoltaic (PV) systems are critical to improve the operation of energy distribution grids. We describe a neural autoregressive model which aims at performing such intraday forecasts. We build upon a physical, deterministic PV performance model, the output of which being used as covariates in the context of the neural model. In addition, our application data relates to a geographically distributed set of PV systems. We address all PV sites with a single neural model, which embeds the information about the PV site in specific covariates. We use a scale-free approach which does rely on explicit modelling of seasonal effects. Our proposal repurposes a model initially used in the retail sector, and discloses a novel truncated Gaussian output distribution. An ablation study and a comparison to alternative architectures from the literature shows that the components in the best performing proposed model variant work synergistically to reach a skill score of 15.72% with respect to the physical model, used as a baseline.

View on arXiv
Comments on this paper