ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2303.07924
18
7

Improving Accented Speech Recognition with Multi-Domain Training

14 March 2023
Lucas Maison
Yannick Esteve
ArXivPDFHTML
Abstract

Thanks to the rise of self-supervised learning, automatic speech recognition (ASR) systems now achieve near-human performance on a wide variety of datasets. However, they still lack generalization capability and are not robust to domain shifts like accent variations. In this work, we use speech audio representing four different French accents to create fine-tuning datasets that improve the robustness of pre-trained ASR models. By incorporating various accents in the training set, we obtain both in-domain and out-of-domain improvements. Our numerical experiments show that we can reduce error rates by up to 25% (relative) on African and Belgian accents compared to single-domain training while keeping a good performance on standard French.

View on arXiv
Comments on this paper