253
v1v2v3v4 (latest)

Generalised Scale-Space Properties for Probabilistic Diffusion Models

Scale Space and Variational Methods in Computer Vision (SSVM), 2023
Abstract

Probabilistic diffusion models enjoy increasing popularity in the deep learning community. They generate convincing samples from a learned distribution of input images with a wide field of practical applications. Originally, these approaches were motivated from drift-diffusion processes, but these origins find less attention in recent, practice-oriented publications. We investigate probabilistic diffusion models from the viewpoint of scale-space research and show that they fulfil generalised scale-space properties on evolving probability distributions. Moreover, we discuss similarities and differences between interpretations of the physical core concept of drift-diffusion in the deep learning and model-based world. To this end, we examine relations of probabilistic diffusion to osmosis filters.

View on arXiv
Comments on this paper