ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2303.07402
20
0

Designing Deep Networks for Scene Recognition

13 March 2023
Zhinan Qiao
Xiaohui Yuan
ArXivPDFHTML
Abstract

Most deep learning backbones are evaluated on ImageNet. Using scenery images as an example, we conducted extensive experiments to demonstrate the widely accepted principles in network design may result in dramatic performance differences when the data is altered. Exploratory experiments are engaged to explain the underlining cause of the differences. Based on our observation, this paper presents a novel network design methodology: data-oriented network design. In other words, instead of designing universal backbones, the scheming of the networks should treat the characteristics of data as a crucial component. We further proposed a Deep-Narrow Network and Dilated Pooling module, which improved the scene recognition performance using less than half of the computational resources compared to the benchmark network architecture ResNets. The source code is publicly available on https://github.com/ZN-Qiao/Deep-Narrow-Network.

View on arXiv
Comments on this paper