ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2303.06832
18
0

ODIN: On-demand Data Formulation to Mitigate Dataset Lock-in

13 March 2023
SP Choi
Jihun Lee
HyeongSeok Ahn
Sanghee Jung
Bumsoo Kang
    VLM
ArXivPDFHTML
Abstract

ODIN is an innovative approach that addresses the problem of dataset constraints by integrating generative AI models. Traditional zero-shot learning methods are constrained by the training dataset. To fundamentally overcome this limitation, ODIN attempts to mitigate the dataset constraints by generating on-demand datasets based on user requirements. ODIN consists of three main modules: a prompt generator, a text-to-image generator, and an image post-processor. To generate high-quality prompts and images, we adopted a large language model (e.g., ChatGPT), and a text-to-image diffusion model (e.g., Stable Diffusion), respectively. We evaluated ODIN on various datasets in terms of model accuracy and data diversity to demonstrate its potential, and conducted post-experiments for further investigation. Overall, ODIN is a feasible approach that enables Al to learn unseen knowledge beyond the training dataset.

View on arXiv
Comments on this paper